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@ Fokker-Planck Equations
@ Square Root Process
@ Boundary Conditions
@ Coordinate and Density Transformations

@ Calibration
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Local Volatility [Dupire 1994]

@ Local Volatility o,y/(S, t) as function of spot level S; and time t:

din St = (I’t aqt — ULV(S t)) dt+0L\/(S, t)dW[
87
o7

+(n—q) K% +aC
KE 22
2 0KZ

JEV(S’ t) =

K=8,T=t

@ Consistent with option market prices.
@ Model is often criticized for its unrealistic volatility dynamics.
@ Dupire formula is mathematically appealing but also unstable.
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Stochastic Volatility [Heston 1993]

@ Stochastic volatility given by a square-root process:

dlnSt = ( C]t—1ljt> at + det
dvi = k(0 —v)dt+o/vidWy
pdt = dWydws

@ Semi-analytical solution for European call option prices:
C(So, K, 19, T) = SP; — Ke (t=a)Tp,

1 1 o e WNKei(Sy, K v, T, u)
i = zﬂr/o 3‘*[ iu

au

@ More realistic volatility dynamics.

@ Does often not exhibit enough skew for short dated expiries.
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Example: Differences in § and ~

The implied and local volatility surface is derived from the Heston
model and therefore the option prices between all models match.
So = 5000,k =5.66,0 =0.075,0 =1.16,p = —0.51,1=0.19, T = 1.7
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Heston Stochastic Local Volatility

@ Add leverage function L(S;, t) and mixing factor #:

dinS; = <rt —qr— %L(St, l‘)21/t> dt + L(St, t)/mrdW;®

dvi = k(0 —uv)dt+no/vidWY
pdt = dW/dW?

@ Leverage L(x;,t) is given by probability density p(S;, v, t) and

ULV(va t) fR+ p(S?7V7 t)dl/

VE[]S = S S+ vP(St, v, t)dv

@ Mixing factor n tunes between stochastic and local volatility.

L(St,t) = = ov(St, t)
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Cheat Sheet: Link between SDE and PDE

Starting point is a multidimensional SDE of the form:
ax; = [,I,(Xt, t)dt + O'(Xt, t)th

Feynman-Kac: price of a derivative u(x;, t) with boundary condition
u(xt, T) at maturity T is given by:

n n
DU+ > pid U + % 3 (aaT)kI Oy U — ru =0
k=1 k=1

Fokker-Planck: time evolution of the probability density function p(x;, t)
with the initial condition p(x, t = 0) = §(x — Xq) is given by:

op = Zaxk [Mlp] +5 Z 8xkax, [(0'0' ) p}

kl1
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Backward Feynman-Kac Equation

The SLV model leads to following Feynman-Kac equation for a function
U:RxRsgxRso = R, (x,v, 1) = u(x,v,t):

1 1
0 = o+ §L2V3)2(U + énzazl/ﬁfu + novploxd,u
+ (r— q-— ;L2y> oxUu+ k(0 —v)o,u—ru

@ PDE can be solved using either Implict scheme (slow) or more
advanced operator splitting schemes like modified Craig-Sneyd or
Hundsdorfer-Verwer in conjunction with damping steps (fast).

@ Implementation is mostly harmless, extend FdmHe st onOp.
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Forward Fokker-Planck Equation

The corresponding Fokker-Planck equation for the probability density
p: R xRsg x Rso = Rxo, (X, 1, 1) = p(x, v, t) is:

1 1
oo = 0% |L2up| + 5170202 vp] + nopdsd, [Lup]

Y [(r— q- ;L2u> p} 0, 15(0— ) p)

@ Numerical solution of the PDE is cumbersome due to difficult
boundary conditions and the Dirac delta distribution as the initial
condition.

@ PDE can be efficiently solved using operator splitting schemes,
preferable the modified Craig-Sneyd scheme
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Square Root Process

Main issues of the implementation are caused by the square root

process:
dv = k(0 — v)dt + o /7 dW

It has the following Fokker-Planck equation for the probability density
p: RZO X RZO — RZOv (l/7 t) — p(l/, t)

2
op = %5 92 [vp] - 0, [x(6 — v)p]

The stationary probability density p(v) with 9;p(v) = 0 is:

Plv) = v exp(—u)T () o= 2 g =4
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Stationary Probability Density

Stationary Distribution with 6=0.25

oo ifa<i ]
lim p(v) =4 6~ ifa=1 o — ok
v=0 0 ifa>1 — =10

The square root process v; 2 oA
is strictly positive if the
Feller Condition oo > 1 is
met.
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Boundary Condition

The probability weight within [vmin, vmax] of p(v, t) is evolving by:
Vmax Vmax 0_2
8t/ dvp = dv (285 [vp] — 0y [K(O — u)p]>
In order to avoid leaking of probability we enforce:

Vmax
=0

Ymin

Ymin

o [ ap=0 = ff@wm—mw—mm]

=0

V=Vmin;Vmax

«ﬁ[fmwm—wmwm]

Zero Flux Boundary Condition
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On a non-uniform grid {z;, ..., z,} the two-sided approximation of 9, f
is:

s+ — )1 1
hi_1hi(hi—1 + h;)
hi—1 fiq — 1 n hi  fi— 1
hi—1 +h;  h hi—1 +hi hi_4

With h; :== z;.1 — z; and f; := f(z;). The second order derivative is
approximated by:

hi_ifie1 — (hi—1 + hy)fi + hjfi_4

Of(z) =~
2 Shi_thi(hizq + hy)
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Sort by factors of f;, set

¢?
"

then:

= hihi_4
= hi(hi1 + hj)
= hi—1(hi—1 + hi)

9f(z) =~

hi_; hi — h;_ h;
BYS VRS R
; Gi i

2 2
f:+1 f
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A general partial differential equation of the form
onf = A(2)92f + B(2)0,f + C(2)f

has therefore the spacial discretization:

2A; + Bih;_; —2A; + B;
8tf(zi) _ i Cpl i Ii+1+< C( I 1) ) :
i ]
G

=t ifipr + Bifi + aifi_4
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This is interpreted as a tridiagonal transfer matrix T with diagonal j;,
upper diagonal v;, and lower diagonal «;:

B v O :
az P2 72 O e
0 a3 B3 13 0

T:= 0 . -l 0
. Qn—1 Pp-1 Yn—1
Qn Bn
Then
fy fq
Ot =T
fa fn
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Boundary Condition

Add z, below the lower boundary and z,, 4 above the upper boundary
to the grid. The zero flux condition takes the general form

[0:A(z, t)f + B(z, 1)f] 20

Z=20,Zn+1

Lower Boundary: The partial derivative is discretized by a second
order forward differentiation, so that all terms are given by grid points

—h2fo + (h + ho)2fy — ((h1 + ho)? — h2)fy

O:1(20) ~ hohy(hy + ho)
_ _@f (ho+h1)f1_(2ho+h1)fo
& Gt ¢
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Boundary Condition

The general zero-flux boundary condition is therefore discretized at the
lower boundary as

h ho+ h 2hy + h

0 = —%Aofg + MAQH + <—(0:;1)A0 + Bo> fo
<1 C1 C‘]

= ch+bifi +aify
by
fh = - -
=1Io a; 2 1

oy = ’71f2+51f1 +aify

= (7 o )f2+(51 —041*)7‘1

— modification of the transfer matrix.
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Non-Uniform Meshes

Non-uniform meshes are a key component [Tavella & Randall 2000]

Define coordinate transformation
Y = Y(e) for n critical points By with
density factors 5k

8

0.06

M)~ a [Z Jk(e)‘zl >

0.04

k=1
W) = JBR+O-BR
Y(1) - Ymax § T T T T T T

x = loa(S)

Example: xo = In(100), o = 0.05,
Feller constraint is fulfilled

ODE solver is based on Peter’s
Runge-Kutta implementation.
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Loss of Probability

Time evolution of the stationary distribution with zero flux condition.

P(x) = / p(v = I
+7 X

vmn = P71(0.01) - S
o + |
Vmax = P~ (0-99) =7 foA
Vmax 5 o < |
/ pdl/ = 0.98 i S { P
Ymin % + " X i
Integral error after evolving .
for one year: P e i
X !

Vmax 27 * i + grid size: 100

/ p(y’ t = 1y)d]/ — 098 N Feller Constraint —> ! | X grid size: 1000
Ymin = T

T T T T
0.2 0.4 0.6 0.8 1.0 1.2 1.4
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Transformed Density

Recap: Stationary distribution:
P(v) = B~ exp(—Bv)l (o)™

Remove divergence following Lucic [2] by using

g = v
2 2
=0 = %V@Eq—i-m(z/—i-G)@Vq—i- %q

This equation has the stationary solution
G(v) = p* exp(—pr)l (a)~"

which converges to 3T (o) " asv — 0
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Transformed Probability Density

Time evolution of the transformed distribution with zero flux condition.
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Log Coordinates

Apply 1té’s lemma to z = log v:

o2 1 1
Fokker-Planck equation for the probability distribution
f:RxRsq—Rxp,(z,1) = f(z,t) (v = exp(2)):

dz = (16 —

02 1 2 0'21
8tf(za t) - _az((/ia — ?); — /i)f+ OZ(E;f)

Stationary solution:

f(z) = 8~ exp(za) exp(— B exp(z)) ()" = vp(v)

f converges to 0 as z — —oo
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Log Coordinates

Time evolution of log probability density with zero flux condition
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Intermediate Results

@ Proper implementation of the zero flux boundary condition is not
enough to get a stable scheme.

@ Transformation of the PDE in log coordinates leads to a less
poisonous problem.

@ Non-Uniform meshers are a key component for success.

— all'in all, mostly harmless ®. Time for another dimension
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Zero Flux Boundary Condition in two Dimensions

Adding the stock process to the picture complicates matters a bit.
Probability density has a second variable x = log S, and the
Fokker-Planck equation reads

of = 02A(z, x, )f + 8,B(z, x, t)f + 0,0xpC(2, x, t)f + powers of dy

Stretching the argument above a bit' we arrive at the boundary
condition

[0:A(z, x, t)f + B(z, x, )f + pdxC(z, x, )] 20

Z=2p,24

'Can be made rigorous [2]
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SLV Fokker-Planck: Natural Coordinates

de = (1= Gr— Z)dt+ VIL(x, )W
dvy = (0 — vp)dt + 1o /rdWY
pdt = dWFXdW?

Fokker-Planck equation:

1 1
Oop = éa)z( [Lzyp] + 57720285 [vp] + nopdxd, [Lvp]

y
—0Oyx [(r —q- 2L21/> p} —0,[k(0—v)p]

The zero flux condition takes the form Vx :

=0

o? o?
[21/8,,,0 + (Fa(l/ —0)+ 2) p+ pua@pr}

V=rp,V=Vn41
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SLV Fokker-Planck: Transformed Density g = v'—%p

Fokker-Planck equation for g = v'—p

2k0
0q — gaﬁqu + (= + G)oxg + é?,((%L2 + an—'ZL)q
2 2r20
+Ufu85q + k(v +0)0,9 + qu
2 o
+povdxd,Lg
The zero flux condition takes the form Vx :
o2
?V&,q + kg + pua@qu] =0

V=Vg,V=Vn11
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SLV Fokker-Planck: Log Coordinates

d = (1= Gr— Z)dt+ vuL(x, AWy

o2 1 1 y
dz; = ((k0— ?); — k)dt + nade
pdt = dW{dWy

Fokker-Planck equation:

_ 1 or2 >
of = 50 [L uf}+Ta { f}-l—napaxaz[Lf]

o, [(r—q— Y2, )f} o, [((H@—U:)l—lﬁ)f

The zero-flux boundary condition is
21

[8zf — k(1 - g)f—i— paafo]

!
5 =0

V=ro,V=Vn1

Gottker-Schnetmann, Spanderen Towards SLV in QuantLib QuantLib User Meeting

29 /41



SLV Fokker-Planck: Implementation

Example log coordinates:

hf = %aﬁ [L%f} 82 { f} + nopdxdy [L1]
o |(r—q-1r2\f| - o ((ﬁH—U—z)l—ﬁ)f
x q 5 z 5/,
212 2 1 2
of = 5‘9 L2f + ?—8 f + 1o pdyd,LF
2 4 0
+(—r+q)oxf + EaxL2f + [(—ne — %)V + n] 0,f + 'if

Use multiplication of derivative operators with L on the right hand side,
added method muliR to TripleBandBinearOp (saves some terms).
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Start Condition: Dirac Delta Distribution

To begin with the Dirac delta distribution need to be regularized.

Approximation for small At based on

L(x,t) = W\/;;)’()) = const ¥Vt € [0, At]

@ Exact solution is known for p = 0

© One Euler Step based on the SDE leads to bivariate Gaussian
distribution

© Semi-Analytical solution for exact sampling [Brodie, Kaya 2006]
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Calibration

@ Start with a a calibrated Local Volatility Model o,y (x;, t) and
calibrated Heston Model (v, 0, , o, p)

@ Recap: Leverage L(x;, t) is given by

arv(xt, b) Ja+ P(Xt, v, t)dv

IR (.t
N s A7 L

@ Start condition: p(x,v,0) = d(x — X)d(v — Nup)

L(Xt, t) =

oLv(Xi=0,0)

N

= L(Xt=0,0) =
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Calibration

lterative Scheme:

@ Use Fokker-Planck equation to get from
p(x,v, t) — p(x,v, t + At)
assuming a piecewise constant leverage function L(x;, t) in t

©@ Calculate leverage function at t + At:

S+ P(X, v, t+ At)dv
Jrr vp(X, v, t+ At)dv

L(X,t—l— At) = ULv(X,t+ At)\/

@ Sett:=t+ At
© If tis smaller than the final maturity goto @
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Calibration Example

Motivation: Set-up extreme test case for the LSV calibration

@ Feller condition is strongly violated with o« = 0.6

@ Implied volatility surface of the Heston and the local volatility
model differ significantly.

@ Local Volatility: o;y(x,t) = 30%

@ Heston Parameters:
So =100, \/1p =24.5%,k = 1,0 = vy, 0% =0.2,p=—-75%

@ Use log coordinates and modified Craig-Sneyd scheme
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Calibration Example: Heston

Implied Volatility Surface
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Calibration Example: Round Trip

Quality of calibration is tested by the round trip error

@ Fokker-Planck step: Calibrate the leverage function L(x, t)

@ Feyman-Kac step: Calculate European option prices under
resulting LSV model and back out implied volatility surface

@ Show differences w.r.t. expected value of

Timpl (K t) = oy (S, t) = 30%
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Calibration Example: LSV Implied Volatility Surface
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Calibration Example: Leverage Function L(S;, t)
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Conclusion: Heston Local Volatility in QuantLib

v/ Backward Feyman-Kac solver
v Forward Fokker-Planck solver

v Zero-Flux boundary condition
v natural and log coordinates, transformed probability density

v/ Non-uniform meshers are a key factor for success
v Heston Local Volatility calibration

v/ Round trip errors are around 5bp in vols for extreme case

Repository:
https://github.com/jschnetm/quantlib/tree/slv/QuantLib
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Disclaimer

The views expressed in this presentation are the personal views of the
speakers and do not necessarily reflect the views or policies of current or
previous employers.
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