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Abstract

This report describes the implementation of the Heston Stochastic
Local Volatility Model in QuantLib.

1 Introduction

The local volatility model is widely used to price exotic equity derivatives.
On the other hand it is criticized for an unrealistic volatility dynamics. Some
derivatives, especially those containing forward starting features as cliques,
will thus not be priced realistically.

Stochastic volatility models (SLV) have been introduced to model the
dynamics better and one of the most widely used of those models is the
Heston model, although its dynamics can again be criticised for being unre-
alistic for typical choices of parameters. We nevertheless use this model as a
starting point, since an implementation is already available in the QuantLib.

A stochastic local volatility model can combine the desirable features
of both models. Vanilla options can be priced exactly and the volatility
dynamics can be inherited from the stochastic volatility model.

1.1 Overview

This article is organized as follows: In the second and third section we intro-
duce the mathematics of the model. Since a calibration to real world data
often yields Heston parameters which violate the Feller constraint, coordi-
nate transforms are discussed in a large part of section three. The fourth
section discusses the general discretization of the model on non-uniform
grids. Special care must be given to the zero-flux boundary conditions when
evolving probability densities using the Fokker-Planck equation. Because of
the singular start values when evolving probability densitities we found it
helpful to use non-uniform and adaptive grids. For the former we had to
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extend the finite difference framework of the QuantLib, which was up to
now could handle only one concentrating point.

The fifth section contains a short discussion of the calibration of the SLV
model. The sixth section discusses the results of the newly introduced test
cases.

2 Stochastic Local Volatility

2.1 Local Volatility Model

In the Local Volatility Model the volatility σLV (S, t) is function of spot level
St and time t. The dynamics of the spot price is given by:

d lnSt =

(
rt − qt −

1

2
σ2LV (S, t)

)
dt+ σLV (S, t)dWt (1)

σ2LV (S, t) =
∂C
∂T + (rt − qt)K ∂C

∂K + qtC
K2

2
∂2C
∂K2

∣∣∣∣∣
K=S,T=t

(2)

The model can be calibrated to yield prices consistent with option market
prices. It is is often criticized for its unrealistic volatility dynamics. The
Dupire formula is mathematically appealing but also unstable.

2.2 Heston Model

d lnSt =

(
rt − qt −

1

2
νt

)
dt+

√
νtdW

S
t

dνt = κ (θ − νt) dt+ σ
√
νtdW

ν
t

ρdt = dW ν
t dW

S
t

The Heston model allows for a semi-analytical solution for European call
option prices:

C(S0,K, ν0, T ) = SP1 −Ke−(rt−qt)TP2

Pj =
1

2
+

1

π

∫ ∞
0
<
[
e−iu lnKφj(S0,K, ν0, T, u)

iu

]
du

It volatility dynamics is more realistic, but can still be criticized when the
Feller constraint is violated. The volatility will then exhibit paths which
stay near zero for prolonged periods of time. Additionally it does often not
exhibit enough skew for short dated expiries.
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2.3 Heston Stochastic Local Volatility

We now add a leverage function L(St, t) and mixing factor η:

d lnSt =

(
rt − qt −

1

2
L(St, t)

2νt

)
dt+ L(St, t)

√
νtdW

S
t

dνt = κ (θ − νt) dt+ ησ
√
νtdW

ν
t

ρdt = dW ν
t dW

S
t

The leverage function L(xt, t) is given by probability density p(St, ν, t) and

L(St, t) =
σLV (St, t)√
E[νt|S = St]

= σLV (St, t)

√ ∫
R+ p(St, ν, t)dν∫
R+ νp(St, ν, t)dν

(3)

The mixing factor η tunes between stochastic and local volatility.

3 Link between SDE and PDE

The link between SDE and PDE is given by the Feynman-Kac formula.
Starting point is a multidimensional SDE of the form:

dxt = µ(xt, t)dt+ σ(xt, t)dWt

The Feynman-Kac formula is a PDE for the price of a derivative u(xt, t)
with boundary condition u(xT , T ) at maturity T is given by:

∂tu+
n∑
k=1

µi∂xku+
1

2

n∑
k,l=1

(
σσT

)
kl
∂xk∂xlu− ru = 0 (4)

The Fokker-Planck equation gives the time evolution of the probability den-
sity function p(xt, t) with the initial condition p(x, t = 0) = δ(x− x0) by:

∂tp = −
n∑
k=1

∂xk [µip] +
1

2

n∑
k,l=1

∂xk∂xl
[(
σσT

)
kl
p
]

(5)

3.1 Backward Equation: Feynman-Kac

The SLV model leads to following Feynman-Kac equation for a function
u : R× R≥0 × R≥0 → R, (x, ν, t) 7→ u(x, ν, t):

0 = ∂tu+
1

2
L2ν∂2xu+

1

2
η2σ2ν∂2νu+ ησνρL∂x∂νu

+

(
r − q − 1

2
L2ν

)
∂xu+ κ (θ − ν) ∂νu− ru

This PDE can be solved using either Implict scheme (slow) or more advanced
operator splitting schemes like modified Craig-Sneyd or Hundsdorfer-Verwer
in conjunction with damping steps (fast). The Implementation is mostly
harmless by extending FdmHestonOp. The PDE can be efficiently solved us-
ing operator splitting schemes, preferable the modified Craig-Sneyd scheme.
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3.2 Forward Equation: Fokker-Planck

The corresponding Fokker-Planck equation for the probability density p :
R× R≥0 × R≥0 → R≥0, (x, ν, t) 7→ p(x, ν, t) is:

∂tp =
1

2
∂2x
[
L2νp

]
+

1

2
η2σ2∂2ν [νp] + ησρ∂x∂ν [Lνp]

−∂x
[(
r − q − 1

2
L2ν

)
p

]
− ∂ν [κ (θ − ν) p] (6)

The numerical solution of the PDE is cumbersome due to difficult boundary

conditions and the Dirac delta distribution as the initial condition. Espe-
cially the square root process for the variance introduces difficult to handle
boundary conditions if the so called Feller constraint is violated.

3.3 Feller Constraint

The square root process

dνt = κ(θ − νt)dt+ σ
√
νtdW

has the following forward Fokker-Planck equation for the probability density
p : R≥0 × R≥0 → R≥0, (ν, t) 7→ p(ν, t)

∂tp =
σ2

2
∂2ν(νp)− ∂ν(κ(θ − ν)p) (7)

Alternatively this can be written as

∂tp =
σ2

2
ν∂2νp+ (σ2 − κ(θ − ν))∂νp+ κp (8)

so that the derivative operators act on the probability distribution p. A
general discussion of the properties of equations of this type can already be
found in in Feller’s paper [1]. For reflecting boundary conditions at ν = 0
this equation has the stationary solution ∂tp̂ = 0

p̂(ν) = βανα−1 exp(−βν)Γ(α)−1

with α = 2κθ
σ2 , β = α

θ . Observe that

∂2ν(νp̂) = ∂ν(α− νβ)p̂ = −βp̂+ (α− νβ)∂ν p̂

with

α− νβ =
2

σ2
(κθ − κν)

therefore
σ2

2
∂2ν(νp̂) = −κp̂+ κ(θ − ν)∂ν p̂
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Figure 1: Stationary probability distribution.

and
∂ν(κ(θ − ν)p̂) = −κp+ κ(θ − ν)∂ν p̂

which completes the proof that ∂tp̂ = 0.
Note that p̂ diverges as ν → 0 when the Feller constraint σ2 ≤ 2κθ is

violated, since then α − 1 = σ−2(2κθ − σ2) < 0. The Feller constraint is
often violated when calibrating the Heston model to real market data. This
is usually not an issue for the backward equation because this equation de-
scribes the evolution of the derivative’s price backwards in time and these
prices usually stay regular on the boundary. For the calibration we have to
solve the forward equation and the probability distribtion in time. This dis-
tribution diverges at the lower boundary if the Feller constraint is violated,
therefore standard boundary conditions like Dirichlet and von Neumann do
not work.

In this case it reasonable to apply coordinate transformation to mitigate
the issues.
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3.3.1 Transformed Square Root Process

The divergence as ν → 0 suggests to look for an equation for q = ν1−αp.
Using

∂ν(νp) = ∂ν(ναq) = ανα−1q + να∂νq

∂2ν(νp) = α(α− 1)να−2q + 2ανα−1∂νq + να∂2νq

∂ν(p) = ∂ν(να−1q) = (α− 1)να−2q + να−1∂νq

we find

∂tp =

(
σ2

2
α(α− 1)να−2q + σ2ανα−1∂νq +

σ2

2
να∂2νq

)
+(

κανα−1q + κνα∂νq
)
−
(
κθ(α− 1)να−2q + κθνα−1∂νq

)
= να−1

σ2

2
ν∂2νq + να−1(σ2α+ κν − κθ)∂νq + να−1

2κ2θ

σ2
q

⇒ ∂tq =
σ2

2
ν∂2νq + κ(ν + θ)∂νq +

2κ2θ

σ2
q (9)

This equation has the stationary solution

q̂(ν) = βα exp(−βν)Γ(α)−1

which converges to βαΓ(α)−1 as ν → 0.

3.3.2 Log Square Root Process

Now look at the stochastic process for z = log ν, which by Itô’s lemma is
given by

dz = ((κθ − σ2

2
)
1

ν
− κ)dt+ σ

1√
ν
dW

The forward Fokker-Planck equation for the probability distribution f :
R× R≥0 → R≥0, (z, t) 7→ f(z, t) of this process is given by

∂tf(z, t) = −∂z((κθ −
σ2

2
)
1

ν
− κ)f + ∂2z (

σ2

2

1

ν
f) (10)

with ν = exp(z). This can be rewritten as

∂tf =
σ2

2

1

ν
∂2zf + ((−κθ − σ2

2
)
1

ν
+ κ)∂zf + κθ

1

ν
f (11)

for the use as a starting point for a finite difference implementation. This
equation has the stationary solution

f̂(z) = βα exp(zα) exp(−β exp(z))Γ(α)−1 = νp̂(ν)
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In a similar fashion as above this can be checked by observing

∂2z (e−z f̂) = ∂z((α− 1)e−z − β)f̂

= −(α− 1)e−z f̂ + ((α− 1)e−z − β)∂z f̂

and

∂z((κθ −
σ2

2
)e−z − κ)f̂ = −(κθ − σ2

2
)e−z f̂ + ((κθ − σ2

2
)e−z − κ)∂z f̂

Since
σ2

2
(α− 1) = κθ − σ2

2

and
σ2

2
β = κ

we see that ∂tf̂ = 0. Normation of p̂ and f̂ can be easily checked via the
definition of the Γ function.

Because of the extra factor of ν f̂ converges to 0 as z → −∞ (corre-
sponding to ν → 0) if α > 0, even if the Feller constraint is violated. The
same applies for general (non-stationary) solutions of both equations.

f(z) = νp(ν) is actually a more general result, when considering the
cumulative distribution functions and changing variables z = log ν, dz =
ν−1dν:

F (x) =

∫ x

−∞
f(z)dz =

∫ ex

0
f(log ν)ν−1dν =

∫ ex

0
p(ν)dν = P (ex)

4 Discretization of the Fokker-Planck Equation

It is a standard technique to use non-uniform grids to improve convergence
at critical points without having to introduce to many grid points.

The class Concentrating1dMesher had already offered constructing meshes
with one concentrating point. This class was extended to allow multiple con-
cenctrating points according to [3].

On a non-uniform grid {z1, . . . , zn} the two-sided approximation of ∂zf
is done by

∂zf(zi) ≈
h2i−ifi+1 + (h2i − h2i−1)fi − h2i fi−1

hi−1hi(hi−1 + hi)

=
hi−1

hi−1 + hi

fi+1 − fi
hi

+
hi

hi−1 + hi

fi − fi−1
hi−1

where hi := zi+1 − zi and fi := f(zi). This can be interpreted as passing
a parabola through fi−1, fi, fi+1 or alternatively as a weighted average of
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the forward and backward derivative at zi. The formula collapses to the
usual two-sided difference on a uniform grid, but has a lower error on the
non-uniform grid.

The second derivative is approximated by

∂2zf(zi) ≈
hi−ifi+1 − (hi−1 + hi)fi + hifi−1

1
2hi−1hi(hi−1 + hi)

We finally sort by factors of fi, which is typically needed within a finite
difference implementation. Setting

ζi := hihi−1

ζpi := hi(hi−1 + hi)

ζmi := hi−1(hi−1 + hi)

we find

∂zf(zi) ≈
hi−i
ζpi

fi+1 +
(hi − hi−1)

ζi
fi −

hi
ζmi

fi−1

∂2zf(zi) ≈
2

ζpi
fi+1 −

2

ζi
fi +

2

ζmi
fi−1

4.1 General Fokker-Planck Equation in 1D

The general Fokker-Planck equation (5) in one dimension has the form

∂tf = ∂2zA(z)f + ∂zB̂(z)f (12)

When solving the equation on a grid, it is generally more convenient to have
the derivative operator act on the function f . The equation now takes the
form

∂tf = A(z)∂2zf +B(z)∂zf + C(z)f (13)

with B(z) = 2∂zA(z) + B̂(z) and C(z) = ∂zB̂(z) + ∂2zA(z). Equation (13)
has the spacial discretization

∂tf(zi) =
2Ai +Bihi−i

ζpi
fi+1 +

(
−2Ai +Bi(hi − hi−1)

ζi
+ Ci

)
fi

+
2Ai −Bihi

ζmi
fi−1

=: γifi+1 + βifi + αifi−1
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This is interpreted as a tridiagonal transfer matrix T with diagonal βi, upper
diagonal γi, and lower diagonal αi:

T :=



β1 γ1 0 . . .
α2 β2 γ2 0 . . .
0 α3 β3 γ3 0 . . .
... 0

. . .
. . .

. . . 0
... αn−1 βn−1 γn−1

αn βn


Then the time evolution of the discretized probability distribution func-

tion

p :=

p1...
pn


on the lattice {zi} is given by

∂tp = Tp

The Fokker-Planck equations for the square root process (7), the trans-
formed square root process (9), and the square root process in log coordi-
nates (10) are of the general form (13).

4.2 Boundary Condition in one Dimension

The discretization at the boundary cannot use either f0 or fn+1, because it
is not an element of the discretization. Therefore some boundary condition
needs to be applied. While often open boundary conditions are used by
setting ∂2zf = 0 at the boundary and using a one sided first order derivative
for ∂zf , the zero flux condition at the boundary is a natural choice for this
sort of problem. These conditions avoid leaking of probability mass via the
boundaries.

Zero Flux Condition Heuristically these boundary conditions can be
derived as follows. No probability weight shall flow from the boundaries of
our discretization, i.e. we want the weight within our our boundaries to be
constant. We add an artificial z0 below the lower boundary and zn+1 above
the upper boundary to the grid. Then

∂t

∫ zn+1

z0

f(z)dz
!

= 0 .

From equation (12) we have

∂t

∫ zn+1

z0

f(z)dz =

∫ zn+1

z0

(
∂2zA(z)f + ∂zB̂(z)f

)
dz

=
(
∂zA(z)f + B̂(z)f

)∣∣∣
z=z0,zn+1
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The zero flux condition therefore takes the general form[
A(z)∂zf +B′(z)f

]∣∣
z=z0,zn+1

= 0

with B′ = B̂+∂zA. For a more rigorous derivation of the zero flux boundary
condition see [2].

Lower Boundary Let us now look into the discretization of the zero flux
boundary conditions. The partial derivative is discretized by a second order
forward differentiation, so that all terms are given by grid points

∂zf(z0) ≈
−h20f2 + (h1 + h0)

2f1 − ((h1 + h0)
2 − h20)f0

h0h1(h1 + h0)

= −h0
ζp1
f2 +

(h0 + h1)

ζ1
f1 −

(2h0 + h1)

ζm1
f0

The general zero-flux boundary condition is therefore discretized at the lower
boundary as

0 = −h0
ζp1
A0f2 +

(h0 + h1)

ζ1
A0f1 +

(
−(2h0 + h1)

ζm1
A0 +B′0

)
f0

=: c1f2 + b1f1 + a1f0

Now

f0 = − c1
a1
f2 −

b1
a1
f1

=
h0
ζp1

(
−(2h0 + h1)

ζm1
+
B′0
A0

)−1
f2 −

h0 + h1
ζ1

(
−(2h0 + h1)

ζm1
+
B′0
A0

)−1
f1

and this enables us to remove f0 from the discretization. Note that the result
has a nicely concentrated form of the specifics of the boundary condition in

the form of
B′0
A0

, the rest is generic. This might not be the best way to
compute the result, whenever A0 is small.

The transfer matrix is modified by

∂tf1 = γ1f2 + β1f1 + α1f0 (14)

= (γ1 − α1
c1
a1

)f2 + (β1 − α1
b1
a1

)f1 (15)

=: (γ1 + ∆γ1)f2 + (β1 + ∆β1)f1 (16)

with

∆γ1 = α1
h0
ζp1

1

− (2h0+h1)
ζm1

+
B′0
A0

=
h0
ζp1

2A1 −B1h1
ζm1

1

− (2h0+h1)
ζm1

+
B′0
A0

∆β1 = −α1
h0 + h1
ζ1

1

− (2h0+h1)
ζm1

+
B′0
A0

= −h0 + h1
ζ1

2A1 −B1h1
ζm1

1

− (2h0+h1)
ζm1

+
B′0
A0

This corrects the factors of f1 and f2, i.e. the diagonal and the upper
off diagonal.
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Upper Boundary The second order backward differentiation at the up-
per boundary reads

∂zf(zn+1) ≈ −−h
2
nfn−1 + (hn + hn−1)

2fn − ((hn + hn−1)
2 − h2n)fn+1

hnhn−1(hn + hn−1)

=
hn
ζmn

fn−1 −
hn−1 + hn

ζn
fn +

2hn + hn−1
ζpn

fn+1

The general zero-flux boundary condition is therefore discretized at the up-
per boundary zn+1 as

0 =
hn
ζmn

An+1fn−1 −
(hn + hn−1)

ζn
An+1fn +

(
(2hn + hn−1)

ζpn
An+1 +B′n+1

)
fn+1

=: cnfn−1 + bnfn + anfn+1

Now

fn+1 = − cn
an
fn−1 −

bn
an
fn

= − hn
ζmn

(
(2hn + hn−1)

ζpn
+
B′n+1

An+1

)−1
fn−1 +

hn + hn−1
ζn

(
(2hn + hn−1)

ζpn
+
B′n+1

An+1

)−1
fn

and this again enables us to remove fn+1.

∂tfn = γnfn+1 + βnfn + αnfn−1

= (βn − γn
cn
an

)fn + (αn − γn
bn
an

)fn−1

=: (βn + ∆βn)fn + (αn + ∆αn)fn−1

with

∆αn = −γn
hn
ζmn

1
(2hn+hn−1)

ζpn
+

B′n+1

An+1

= − hn
ζmn

2An +Bnhn−1
ζpn

1
(2hn+hn−1)

ζpn
+

B′n+1

An+1

∆βn = γn
hn−1 + hn

ζn

1
(2hn+hn−1)

ζpn
− B′n+1

An+1

=
hn−1 + hn

ζn

2An +Bnhn−1
ζmn

1
(2hn+hn−1)

ζpn
− B′n+1

An+1

This corrects the factors of fn and fn−1, i.e. the diagonal and the lower off
diagonal.
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Boundary Factors We define the common factors of the boundary cor-
rection as the upper and the lower bondary factors

bfl := A0
α1

a1

bfu := An+1
γn
an

then

∆β1 = −h0 + h1
ζ1

bfl

∆γ1 =
h0
ζp1

bfl

∆αn = − hn
ζmn

bfu

∆βn =
hn−1 + hn

ζn
bfu

4.2.1 Square Root Process

From the Fokker-Planck equation (8) we read

A(ν) =
σ2

2
ν

B(ν) = σ2 − κ(θ − ν)

C(ν) = κ

Therefore

µi := B(νi) = σ2 − κ(θ − νi)

αi =
2Ai −Bihi

ζmi
=
σ2νi − µihi

ζmi

βi =

(
−2Ai +Bi(hi − hi−1)

ζi
+ Ci

)
=

(
−σ2νi + µi(hi − hi−1)

ζi
+ κ

)
γi =

2Ai +Bihi−i
ζpi

=
σ2νi + µihi−i

ζpi

The zero-flux boundary condition for the square root process - using equation
(7) - is [

σ2

2
∂ν(νp) + κ(ν − θ)p

]∣∣∣∣
ν=ν0,νn+1

= 0

i.e. [
σ2

2
ν∂νp+

(
κ(ν − θ) +

σ2

2

)
p

]∣∣∣∣
ν=ν0,νn+1

= 0
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i.e.

B′(ν) = κ(ν − θ) +
σ2

2

Therefore

β1 → β1 + ∆β1

γ1 → γ1 + ∆γ1

αn → αn + ∆αn

βn → βn + ∆βn

with

∆γ1 =
h0
ζp1

2A1 −B1h1
ζm1

1

− (2h1+h0)
ζm1

+
B′0
A0

=
h0
ζp1

σ2ν1 − µ1h1
ζm1

1

− (2h0+h1)
ζm1

+
κ(ν0−θ)+σ2

2
σ2

2
ν0

∆β1 = −h0 + h1
ζ1

2A1 −B1h1
ζm1

1

− (2h0+h1)
ζm1

+
B′0
A0

= −h0 + h1
ζ1

σ2ν1 − µ1h1
ζm1

1

− (2h0+h1)
ζm1

+
κ(ν0−θ)+σ2

2
σ2

2
ν0

Since ν0 is small it is better to calculate this as:

∆γ1 =
h0
ζp1

σ2ν1 − µ1h1
ζm1

ν0

− (2h0+h1)ν0
ζm1

+ 2κ(ν0−θ)+σ2

σ2

∆β1 = −h0 + h1
ζ1

σ2ν1 − µ1h1
ζm1

ν0

− (2h0+h1)ν0
ζm1

+ 2κ(ν0−θ)+σ2

σ2
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For the upper boundary

∆αn = −hn
ζpn

2An +Bnhn−1
ζpn

1
(2hn+hn−1)

ζmn
+

B′n+1

An+1

= −hn
ζpn

σ2νn + µnhn−1
ζpn

1

(2hn+hn−1)
ζmn

+
κ(νn+1−θ)+σ2

2
σ2

2
νn+1

= −hn
ζpn

σ2νn + µnhn−1
ζpn

1
(2hn+hn−1)

ζmn
+ 2κ(νn+1−θ)+σ2

σ2νn+1

∆βn =
hn−1 + hn

ζn

2An +Bnhn−1
ζpn

1
(2hn+hn−1)

ζmn
− B′n+1

An+1

=
hn−1 + hn

ζn

σ2νn + µnhn−1
ζpn

1
(2hn+hn−1)

ζmn
+ 2κ(νn+1−θ)+σ2

σ2νn+1

4.2.2 Transformed Square Root Process

From equation (9) we take

A(ν) =
σ2

2
ν

B(ν) = κ(ν + θ)

C(ν) =
2κ2θ

σ2

Therefore

µi := B(νi) = κ(νi + θ)

αi =
2Ai −Bihi

ζmi
=
σ2νi − µihi

ζmi

βi =

(
−2Ai +Bi(hi − hi−1)

ζi
+ Ci

)
=

(
−σ2νi + µi(hi − hi−1)

ζi
+

2κ2θ

σ2

)
γi =

2Ai +Bihi−i
ζpi

=
σ2νi + µihi−i

ζpi

The zero-flux boundary condition for the transformed density is derived from
the one for p[

σ2

2
ν∂νν

α−1q +

(
κ(ν − θ) +

σ2

2

)
να−1q

]∣∣∣∣
ν=ν0,νn+1

= 0

ν∂νν
α−1q = (α− 1)να−1q + ννα−1∂νq

σ2

2
ν∂νq +

σ2

2
(α− 1)q +

(
κ(ν − θ) +

σ2

2

)
q =

σ2

2
ν∂νq + κνq

14



i.e.

B′(ν) = κν

4.2.3 Log Square Root Process

From the Fokker-Planck equation (11) we read

A(z) =
σ2

2
exp(−z)

B(z) = (−σ
2

2
− κθ)) exp(−z) + κ

C(z) = κθ exp(−z)

Therefore

µi := B(zi) = (−σ
2

2
− κθ)) exp(−zi) + κ

αi =
2Ai −Bihi

ζmi
=
σ2 exp(−zi)− µihi

ζmi

βi =

(
−2Ai +Bi(hi − hi−1)

ζi
+ Ci

)
=

(
−σ2 exp(−zi) + µi(hi − hi−1)

ζi
+ κθ exp(−zi)

)
γi =

2Ai +Bihi−i
ζpi

=
σ2 exp(−zi) + µihi−i

ζpi

Zero Flux Condition As discussed above we impose

∂t

∫ zn+1

z0

f(z)dz
!

= 0

Now∫ zn+1

z0

∂tf(z)dz =

∫ zn+1

z0

(
−∂z((κθ −

σ2

2
)
1

ν
− κ)f + ∂2z (

σ2

2

1

ν
f)

)
dz

=

(
−((κθ − σ2

2
)
1

ν
− κ)f + ∂z(

σ2

2

1

ν
f)

)∣∣∣∣zn+1

z0

which implies(
−((κθ − σ2

2
)
1

ν
− κ)f + ∂z(

σ2

2

1

ν
f)

)∣∣∣∣
z=z0,zn+1

!
= 0

Since

∂z(
σ2

2

1

ν
f) = −σ

2

2

1

ν
f +

σ2

2

1

ν
∂zf
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We find for the log process

B′(z) = κ(1− θ

ν
) = κ(1− θ exp(−z))

∆γ1 =
h0
ζp1

2A1 −B1h1
ζm1

1

− (2h0+h1)
ζm1

+
B′0
A0

=
h0
ζp1

σ2 exp(−z1)− µ1h1
ζm1

1

− (2h0+h1)
ζm1

+ 2κ(exp(z0)−θ)
σ2

∆β1 = −h0 + h1
ζ1

2A1 −B1h1
ζm1

1

− (2h0+h1)
ζm1

+
B′0
A0

= −h0 + h1
ζ1

σ2 exp(−z1)− µ1h1
ζm1

1

− (2h0+h1)
ζm1

+ 2κ(exp(z0)−θ)
σ2

∆αn = −hn
ζpn

2An +Bnhn−1
ζpn

1
(2hn+hn−1)

ζmn
+

B′n+1

An+1

= −hn
ζpn

σ2 exp(−zn) + µnhn−1
ζpn

exp(−zn+1)
(2hn+hn−1) exp(−zn+1)

ζmn
+ 2κ(1−θ exp(−zn+1))

σ2

∆βn =
hn−1 + hn

ζn

2An +Bnhn−1
ζpn

1
(2hn+hn−1)

ζmn
− B′n+1

An+1

=
hn−1 + hn

ζn

σ2 exp(−zn) + µnhn−1
ζpn

exp(−zn+1)
(2hn+hn−1) exp(−zn+1)

ζmn
+ 2κ(1−θ exp(−zn+1))

σ2

4.3 Fokker-Planck Equation of the Heston-Process

The square root process will now play the role of the variance of a stock
process xt = logSt/S0

dxt = (rt − qt −
νt
2

)dt+
√
νtdW

x
t

dνt = κ(θ − νt)dt+ σ
√
νtdW

ν
t

ρdt = dW x
t dW

ν
t

It combined process has the following forward Fokker-Planck equation for
the probability density p : R× R≥0 × R≥0 → R≥0, (x, ν, t) 7→ p(x, ν, t)

∂tp =
1

2
∂2x(νp) + (

ν

2
− rt + qt)∂xp+

σ2

2
∂2ν(νp)− ∂ν(κ(θ− ν)p) + ∂x∂ν(ρσνp)

16



Alternatively this can be written as

∂tp =
ν

2
∂2xp+(

ν

2
−rt+qt+ρσ)∂xp+

σ2

2
ν∂2νp+(σ2−κ(θ−ν))∂νp+κp+ρσν∂x∂νp

which is more suited as a starting point for the implementation of a finite
difference scheme.

4.3.1 Transformed Probability Density

Take again q = ν1−αp in aboves Fokker-Planck equation. The derivatives
with respect to x do not change, since ∂xν

α−1q = να−1∂xq. Therefore most
of the work is done in the preceding section, we only need to look at the
term with the mixed derivative:

∂x∂ν(νp) = ∂x∂ν(ναq) = ανα−1∂xq + να∂x∂νq

∂tq =
ν

2
∂2xq + (

ν

2
− rt + qt)∂xq +

σ2

2
ν∂2νq + κ(ν + θ)∂νq +

2κ2θ

σ2
q +

αρσ∂xq + ρσν∂x∂νq

=
ν

2
∂2xq + (

ν

2
− rt + qt + ρσ

2κθ

σ2
)∂xq +

σ2

2
ν∂2νq + κ(ν + θ)∂νq +

2κ2θ

σ2
q +

ρσν∂x∂νq

The zero flux condition takes the form ∀x :1[
σ2

2
ν∂νq + κνq + ρνσ∂xq

]∣∣∣∣
z=z0,zn+1

= 0

4.3.2 Heston Process in z = log ν

The spot process is the same as above, xt = logSt/S0, instead of the ν
process we use the square root process for z = log ν

dxt = (rt − qt −
νt
2

)dt+
√
νtdW

x
t

dzt = ((κθ − σ2

2
)
1

ν
− κ)dt+ σ

1√
ν
dW ν

t

ρdt = dW x
t dW

ν
t

1See again [2] for a rigorous derivation
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The forward Fokker-Planck equation for the probability distribution f :
R× R× R≥0 → R≥0, (x, z = log ν, t) 7→ f(x, z, t) of this process is given by

∂tf(z, t) =
1

2
∂2x(νf) + (

ν

2
− rt + qt)∂xf

−∂z((κθ −
σ2

2
)
1

ν
− κ)f + ∂2z (

σ2

2

1

ν
f)

+∂x∂z(ρσf)

with ν = exp(z). This can be rewritten as

∂tf =
1

2
ν∂2xf + (

ν

2
− rt + qt)∂xf

+
σ2

2

1

ν
∂2zf + ((−κθ − σ2

2
)
1

ν
+ κ)∂zf + κθ

1

ν
f

+ρσ∂x∂zf

The zero-flux boundary condition is(
σ2

2

1

ν
∂zf − κ(1− θ

ν
)f + ρσ∂xf

)∣∣∣∣
z=z0,zn+1

!
= 0

4.4 Discretization of the Heston PDE

The new dimension is discretized in the same way as in the one-dimensional
case. Again we do assume a regular discretization. The formulæ from (4)
still apply and we end up with a transfer matrix.

∂tf(xj , zi, t) = γifi+1,j + βifi,j + αifi−1,j +

cifi,j+1 + bifi,j + aifi,j−1 +

9-point operator for the mixed derivative

Note that the coefficients only have labels corresponding to the ν directions,
since they have no dependency on x.

The zero flux condition takes the form ∀x :[
σ2

2
ν∂zp+

(
κ(ν − θ) +

σ2

2

)
p+ ρνσ∂xp

]∣∣∣∣
z=z0,zn+1

= 0

which we generalize to

∀x :
[
A(z)∂zf +B′(z)f + C ′∂xf

]∣∣
z=z0,zn+1

= 0

Using the same three-point approximation for the derivative ∂z and using the
value on the neighboring grid point for the derivative ∂x, i.e. C ′∂xf(x, z1, t)
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instead of C ′∂xf(x, z0, t) and C ′∂xf(x, zn, t) instead of C ′∂xf(x, zn+1, t) the
argument of how to integrate the boundary condition into the discretized
equation stays the same as for the square root process, we only get the last
term as an extra term. Equation (14) is thus modified to

∂tf1 = γ1f2 + β1f1 + α1f0 + . . .

= (γ1 − α1
c1
a1

)f2 + (β1 − α1
b1
a1

)f1 − α1
C ′

a1
∂xf1 + . . .

Because the boundary factors comprise a factor of A0, An+1, resp., we
have for the last term

α1
C ′

a1
= bfl

C ′

A0

and

αn
C ′

an
= bfu

C ′

An+1

You will find the implementation of the zero flux boundary condition in
FdmSquareRootOp.

4.5 Stochastic Local Volatility

As a last extension we add a local leverage function L to the process by
replacing νt → νtL

2(x, t) in the xt process. If the νt process is constant, this
reduces to the well-known local volatility model and the leverage function
can be identified with the local volatility surface. A constant ν can be
achieved by setting the vol-of-vol σ = 0 and the start volatility equal to the
long-term volatility θ. Without loss of generality we can assume νt = 1 in
this case. If on the other hand L ≡ 1, the model is again the standard Heston
model. To make the tuning between the models easier, we will introduce a
mixing parameter η, by replacing σ → ησ later.

dxt = (rt − qt −
νt
2

)dt+
√
νtL(x, t)dW x

t

dνt = κ(θ − νt)dt+ σ
√
νtdW

ν
t

ρdt = dW x
t dW

ν
t

It has the following forward Fokker-Planck equation for the probability den-
sity p : R× R≥0 × R≥0 → R≥0, (x, ν, t) 7→ p(x, ν, t)

∂tp =
1

2
∂2x(νL2p) + ∂x(

ν

2
L2 − rt + qt)p

+
σ2

2
∂2ν(νp)− ∂ν(κ(θ − ν)p)

+∂x∂ν(ρσνLp)
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Now we have an additional choice to make during the implementation. The
first is to keep L and p together:

∂tp =
ν

2
∂2xL

2p+ (−rt + qt)∂xp+
ν

2
∂xL

2p+ ρσ∂xLp

+
σ2

2
ν∂2νp+ (σ2 − κ(θ − ν))∂νp+ κp

+ρσν∂x∂νLp (17)

The zero flux condition takes the form ∀x :[
σ2

2
ν∂zp+

(
κ(ν − θ) +

σ2

2

)
p+ ρνσ∂xLp

]∣∣∣∣
z=z0,zn+1

= 0

The extension of the zero flux boundary condition to the two dimensional
case can be found in FdmHestonFwdOp.

4.5.1 Local Volatility Model

As a side-remark and because the local volatility model is a limiting case
of the SLV model, we note the equations for this model here. The leverage
function L is identified with the local volatility surface L(x, t) ≡ σ(x, t):

dxt = (rt − qt −
νt
2

)dt+ σ(x, t)dW x
t

It has the following forward Fokker-Planck equation for the probability den-
sity p : R× R≥0 × R≥0 → R≥0, (x, ν, t) 7→ p(x, ν, t)

∂tp =
1

2
∂2x(σ(x, t)2p) + ∂x(

1

2
σ(x, t)2 − rt + qt)p

=
1

2
∂2x(σ(x, t)2p) + (−rt + qt)∂xp+

1

2
∂x(σ(x, t)2p)

An implementation of the Fokker-Planck operator can be found in the new
class FdmLocalVolFwdOp.

4.5.2 Transformed Density Function

∂tq =
ν

2
∂2xL

2q + (−rt + qt)∂xq + ∂x(
ν

2
L2 + ρσ

2κθ

σ2
L)q +

σ2

2
ν∂2νq + κ(ν + θ)∂νq +

2κ2θ

σ2
q +

ρσν∂x∂νLq

The zero flux condition takes the form ∀x :[
σ2

2
ν∂νq + κνq + ρνσ∂xLq

]∣∣∣∣
z=z0,zn+1

= 0
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4.5.3 Fokker-Planck Equation in log ν

∂tf(z, t) =
1

2
∂2x(νL2f) + ∂x(

ν

2
L2 − rt + qt)f

−∂z((κθ −
σ2

2
)
1

ν
− κ)f + ∂2z (

σ2

2

1

ν
f)

+∂x∂z(ρσLf)

with ν = exp(z). This can be rewritten as

∂tf =
1

2
ν∂2xL

2f + (−rt + qt)∂xf +
ν

2
∂xL

2f

+
σ2

2

1

ν
∂2zf + ((−κθ − σ2

2
)
1

ν
+ κ)∂zf + κθ

1

ν
f

+ρσ∂x∂zLf

The zero-flux boundary condition is(
σ2

2

1

ν
∂zf − κ(1− θ

ν
)f + ρσ∂xLf

)∣∣∣∣
z=z0,zn+1

!
= 0

4.6 Non-uniform Meshes

Adaptive grids are useful, especially to improve the calibration. The start
condition for the Fokker-Planck equation is a highly singular - and concen-
trated - Greens function. Therefore one might expect, that a grid concen-
trated at the origin will improve the calculation. Also special care has to be
taken for the lower bound if the Feller constraint is violated.

Implementation follows [Tavella & Randall 2000] [3] utilising Peter Casperś
Runge-Kutta solver for the ordinary differential equation

dY (ε)

dε
= A

[
n∑
k=1

Jk(ε)
−2

]− 1
2

Jk(ε) =
√
β2 + (Y (ε)−Bk)2

Y (0) = Ymin

Y (1) = Ymax

based on the coordinate transformation Y = Y (ε) for n critical points Bk
with density factors βk and A chosen such that Y (1) = Ymax.

4.7 Adaptive Grid Sizes

The probability density is highly concentrated at the beginning and blurs
out over a much larger scale later on. The evaluation of the probability
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Figure 2: Example for a non-uniform mesh: x0 = ln(100), ν0 = 0.05, Feller con-
straint is fulfilled

density function is therefore a multi scale problem and best dealt with using
an adaptive grid size. The grid should only be defined on areas where the
probability density function is not negligibly small or zero. Defining this
area is a sort of an chicken and egg problem because the density is what
we want to calculate and we do not know in advance where is significant
contributions are. Therefore we solve the problem separately for lnS and ν
direction. The ν direction is simple because the Fokker-Planck equation for
the square root process has the known closed form solution

νt =
σ2
(
1− e−κt

)
4κ

χ
′2
d

(
4κe−κt

σ2 (1− e−κt)
ν0

)
, d =

4θκ

σ2
. (18)

The high quality implementation of the non-central χ-square distribution in
the boost library allows to calculate prober quantiles for the distribution
density.

It would be difficult to extract the same information for lnS out of the
stochastic local volatility equation (17) without solving the equation. But
the same information is already encoded in the implied or local volatility
surface of the market. If e.g. the local volatility surface is given then the

22



one dimensional Fokker-Planck equation can be solved quite easily and the
boundaries for the grid size in lnS can be derived from there.
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Figure 3: Example for adaptive time and grid meshes used for a relastic Heston
local volatility calibration. x0 = ln(100), r = 0.01, q = 0.02, κ = 2.0, θ = 0.074, ρ =
−0.51, σ = 0.8, ν0 = 0.1974. The market implied volatility surface is shown in figure
(4)

.

The figures (3) show the adaptive time and grid meshes used in a realistic
calibration of the Heston stochasic local volatilty model.

4.8 Adaptive Time Steps

Clearly the first steps sizes should be small compared with later steps when
the density in ν direction is closed to the stationary probability density. The

23



3

4

5
0.5

1.0

1.5

2.0
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Strike ln(K)

Tim
e

Im
pl

ie
d 

V
ol

at
ili

ty

0.3

0.4

0.5

0.6

0.7

0.8

Figure 4: Implied volatility surface for Heston local volatility calibration.

following parametrization of the time steps turned out to be useful

∆ti =
(

1− e−λi
)

∆tm + e−λi∆ts (19)

5 Calibration

The calibration procedure follows Tian et al [4]. A short summary of the
calibration procedure is the following. The key to the calibration is equation
(3). First we calibrate the Heston model and the Local Volatility model
independently. The local volatility model can in principle calibrate exactly
to vanilla options, while the Heston model might not produce enough skew
at the short end.
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Now start with the short dated end of the leverage function by evolving
the probability density using the Fokker-Planck equation and integrating the
density as in equation (3). The implementation of the calibration can be
found in HestonSLVModel in method performCalculation. This method
is called by the LazyObject mechanism, if leverageFunction is called and
a recalculation is necessary. Additionally we have introduced a new lo-
cal volatility object to store the information of the leverage function in an
efficient way, when the grids are non-uniform and adaptive in size. The
implementation is found in FixedLocalVolSurface.

The mixing parameter could additionally be calibrated by using prices
of liquid exotics like barrier options. This is not implemented.

6 Results and Outlook

We have implemented several test cases in the QuantLib test framework.
They can be found in the class HestonSLVModelTest. The most important
one takes a flat local vol surface of 30% and a Heston Model with parameters
S0 = 100,

√
ν0 = 24.5%, κ = 1, θ = ν0, σ

2 = 0.2, ρ = −75%. The correspond-
ing implied vol surface is shown in figure 5. It then calibrates the leverage
function, which has to flatten the implied vol surface given by the Heston
model. The resulting leverage function is shown in figure 6. Afterwards
we price a set of vanilla option using this calibrated SLV model to test for
the round trip error. We found that using suitable parameters the error in
implied volatilities is less than 5 bp.

The mixing parameter is not used during calibration at the moment.
Calibrating to exotics is left to futuer extensions of the SLV model.

References

[1] William Feller. Two singular diffusion problems. The Annals of Mathe-
matics, 54(1):173–182, 1951.

[2] Vladimir Lucic. Boundary conditions for computing densities in hybrid
models via PDE methods. Stochastics, 84(5-6):705–718, 2012.

[3] D. Tavella and C. Randall. Pricing Financial Instruments: The Finite
Difference Method. Wiley, 2000.

[4] Yu Tian, Zili Zhu, Geoffrey Lee, Fima Klebaner, and Kais Hamza. Cal-
ibrating and Pricing with a Stochastic-Local Volatility Model., 2014.
http://ssrn.com/abstract=2182411.

25



Figure 5: Heston implied volatility surface. S0 = 100,
√
ν0 = 24.5%, κ = 1, θ =

ν0, σ
2 = 0.2, ρ = −75%
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Figure 6: Leverage function after round trip calibration
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